5,286 research outputs found

    Cell aging preserves cellular immortality in the presence of lethal levels of damage.

    Get PDF
    Cellular aging, a progressive functional decline driven by damage accumulation, often culminates in the mortality of a cell lineage. Certain lineages, however, are able to sustain long-lasting immortality, as prominently exemplified by stem cells. Here, we show that Escherichia coli cell lineages exhibit comparable patterns of mortality and immortality. Through single-cell microscopy and microfluidic techniques, we find that these patterns are explained by the dynamics of damage accumulation and asymmetric partitioning between daughter cells. At low damage accumulation rates, both aging and rejuvenating lineages retain immortality by reaching their respective states of physiological equilibrium. We show that both asymmetry and equilibrium are present in repair mutants lacking certain repair chaperones, suggesting that intact repair capacity is not essential for immortal proliferation. We show that this growth equilibrium, however, is displaced by extrinsic damage in a dosage-dependent response. Moreover, we demonstrate that aging lineages become mortal when damage accumulation rates surpass a threshold, whereas rejuvenating lineages within the same population remain immortal. Thus, the processes of damage accumulation and partitioning through asymmetric cell division are essential in the determination of proliferative mortality and immortality in bacterial populations. This study provides further evidence for the characterization of cellular aging as a general process, affecting prokaryotes and eukaryotes alike and according to similar evolutionary constraints

    Surface Counterterms and Regularized Holographic Complexity

    Full text link
    The holographic complexity is UV divergent. As a finite complexity, we propose a "regularized complexity" by employing a similar method to the holographic renormalization. We add codimension-two boundary counterterms which do not contain any boundary stress tensor information. It means that we subtract only non-dynamic background and all the dynamic information of holographic complexity is contained in the regularized part. After showing the general counterterms for both CA and CV conjectures in holographic spacetime dimension 5 and less, we give concrete examples: the BTZ black holes and the four and five dimensional Schwarzschild AdS black holes. We propose how to obtain the counterterms in higher spacetime dimensions and show explicit formulas only for some special cases with enough symmetries. We also compute the complexity of formation by using the regularized complexity.Comment: Published version with some small improvement

    Dynamic Studies of Scaffold-dependent Mating Pathway in Yeast

    Get PDF
    The mating pathway in \emph{Saccharomyces cerevisiae} is one of the best understood signal transduction pathways in eukaryotes. It transmits the mating signal from plasma membrane into the nucleus through the G-protein coupled receptor and the mitogen-activated protein kinase (MAPK) cascade. According to the current understandings of the mating pathway, we construct a system of ordinary differential equations to describe the process. Our model is consistent with a wide range of experiments, indicating that it captures some main characteristics of the signal transduction along the pathway. Investigation with the model reveals that the shuttling of the scaffold protein and the dephosphorylation of kinases involved in the MAPK cascade cooperate to regulate the response upon pheromone induction and to help preserving the fidelity of the mating signaling. We explored factors affecting the dose-response curves of this pathway and found that both negative feedback and concentrations of the proteins involved in the MAPK cascade play crucial role. Contrary to some other MAPK systems where signaling sensitivity is being amplified successively along the cascade, here the mating signal is transmitted through the cascade in an almost linear fashion.Comment: 36 pages, 9 figure

    Periodic Radio Variability in NRAO 530: Phase Dispersion Minimization Analysis

    Full text link
    In this paper, a periodicity analysis of the radio light curves of the blazar NRAO 530 at 14.5, 8.0, and 4.8 GHz is presented employing an improved Phase Dispersion Minimization (PDM) technique. The result, which shows two persistent periodic components of ∼6 \sim 6 and ∼10 \sim 10 years at all three frequencies, is consistent with the results obtained with the Lomb-Scargle periodogram and weighted wavelet Z-transform algorithms. The reliability of the derived periodicities is confirmed by the Monte Carlo numerical simulations which show a high statistical confidence. (Quasi-)Periodic fluctuations of the radio luminosity of NRAO 530 might be associated with the oscillations of the accretion disk triggered by hydrodynamic instabilities of the accreted flow. \keywords{methods: statistical -- galaxies: active -- galaxies: quasar: individual: NRAO 530}Comment: 8 pages, 5 figures, accepted by RA

    More on complexity of operators in quantum field theory

    Full text link
    Recently it has been shown that the complexity of SU(nn) operator is determined by the geodesic length in a bi-invariant Finsler geometry, which is constrained by some symmetries of quantum field theory. It is based on three axioms and one assumption regarding the complexity in continuous systems. By relaxing one axiom and an assumption, we find that the complexity formula is naturally generalized to the Schatten pp-norm type. We also clarify the relation between our complexity and other works. First, we show that our results in a bi-invariant geometry are consistent with the ones in a right-invariant geometry such as kk-local geometry. Here, a careful analysis of the sectional curvature is crucial. Second, we show that our complexity can concretely realize the conjectured pattern of the time-evolution of the complexity: the linear growth up to saturation time. The saturation time can be estimated by the relation between the topology and curvature of SU(nn) groups.Comment: Modified the Sec. 4.1, where we offered a powerful proof: if (1) the ket vector and bra vector in quantum mechanics contain same physics, or (2) adding divergent terms to a Lagrangian will not change underlying physics, then complexity in quantum mechanics must be bi-invariant
    • …
    corecore